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Abstract

High-speed camera measurements are increasingly being used in modal
analysis to instantaneously measure full-field structural responses by extract-
ing the displacement information from images using digital-image-correlation
and other optical-flow methods. High-speed cameras capable of filming full
frame at high frame rates can be very expensive and produce image resolu-
tions of only approximately 1 mega pixel, which is why this research aims
at measuring and identifying the full-field response using cheaper, still-frame
cameras with a higher image and intensity resolution, such as digital single-
lens reflex (DSLR) and mirrorless cameras. Using spectral optical flow imag-
ing (SOFI) full-field operational shapes can be acquired using still-frame
cameras. This study demonstrates the hybrid modal-parameter identifica-
tion of full-field mode shapes using an accelerometer and a DSLR camera
for responses far above the DSLR camera’s frame rate (demonstrated up to
1 kHz).
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1. Introduction

Displacements can be tracked in videos by monitoring the pixel-intensity
variations [1] using optical flow algorithms such as the Lucas-Kanade method [2]
(commonly referred to as digital image correlation) with displacement resolu-
tions typically quoted at around 1/100 of a pixel frame-to-frame and 1/10000
of a pixel in the amplitude spectrum for longer time series [1]. High-speed
cameras are increasingly being used in modal analyses because of their many
advantages [3]: the measurements are non-contact and do not affect the mea-
sured structure with any dummy mass. In addition, by using cameras the
entire full-field is measured instantaneously and not by scanning the surface
over time, like in the case with scanning-laser vibrometers [4] , enabling mea-
surement of rotating structures as well [5]. Lastly, because cameras measure
displacements, lower-frequency oscillations with larger motions (in the range
of centimetres to metres), as is often the case with large structures [6], can
be measured, opening possibilities for structural health monitoring [7].

A limitation when using measurements based on high-speed cameras is
the price, which can range up to a couple of hundred thousand euro for high-
end stereoscopic (3D) measurement set-ups. Lower-frame-rate cameras are
much less expensive, which is why many research papers describe attempts to
measure dynamic responses with such cameras. One such example is the use
of a mobile-phone camera to measure a stay cable’s natural frequency and
in turn its tension [8]. Under-sampling and re-mapping the time instances
can be implemented to measure above the Nyquist frequency [9], as well as
by setting a short exposure time and using frequency zooming, thereby al-
lowing for aliasing [10]. Another possibility is filming at different frame rates
and combining the information to produce the aliased spectrum [11]. Fur-
thermore, the rolling-shutter effect has been used to sample high frequencies
from a normal DSLR camera video [12]. As explained in [10] aliasing ap-
proaches from [9–11] and the use of the rolling-shutter [12] require very short
exposure times, since longer exposures act as temporal filters producing a
sort of low-pass filtering. Aliasing approaches are somewhat limited by this
short exposure requirement in that little light can be captured without the
use of strobe lights, which produce an intense but short pulse of light, re-
sulting in an image with little-to-no blur [13]. The paper [14] is an example
of using strobe lights to measure the dynamics of an oscillating wing in 3D
using multiple viewpoints and [15] uses strobe lights to measure at higher fre-
quencies. Due to the time invariance of linear system responses, stereoscopic
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information can be acquired with repeated measurements at different an-
gles [16, 17] or by using a dividing mirror, producing two viewing angles [18],
thereby requiring only one camera instead of two. Lower-frame-rate cameras
typically achieve lower image-noise values, a higher image resolution and
higher dynamic range. For instance, DSLR and mirrorless cameras in the
500–2000 euro price range typically boast a 14-bit colour-intensity resolution
and a 24 mega-pixel count.

It was recently shown that images indicating individual displacement
spectral components can be produced by harmonically varying the illumi-
nation, thereby producing an analogue Fourier transform [19]. This method,
known as spectral optical flow imaging (SOFI), can obtain operational dis-
placement shapes using still-frame cameras such as DSLR or mirrorless cam-
eras, by acquiring a reference image, an image with a sine phase and an
image with a cosine phase, and then combining the information into a full-
field complex displacement field for a chosen frequency, determined by the
harmonic of the blinking lights.

In another publication [20] a hybrid modal-parameter identification was
used to combine eigenvalues measured by an accelerometer and full-field
mode shapes measured by a high-speed camera, making it possible to identify
mode shapes below the camera’s noise floor up to 10 kHz.

This research implements SOFI measurements to acquire high-frequency
full-field displacement fields for selected frequencies up to 1 kHz and com-
bines this data in the hybrid modal-parameter identification from [20], where
by using the least-squares complex-frequency method (LSCF) [21] to identify
the eigenvalues from a single point sensor (accelerometer and/or laser vibrom-
eter) and using the least-squares frequency-domain method (LSFD) [22] on
the SOFI measurements, the full-field mode shapes are produced.

2. Spectral Optical Flow Imaging

Spectral optical flow imaging (SOFI) was introduced in [19]. In this
section the method is briefly explained. For more on the method, please
refer to the original publication.

An object reflects light L from a surface pattern with a reflectance P (x, y)
(where (x, y) are the coordinates of the camera’s image plane) producing a
radiance field r((x, y), L):

r
(
(x, y), L

)
= P (x, y)L (1)
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A camera produces an image with intensity values I(x, y) by integrating the
radiance falling on individual pixels over the camera’s exposure time Te:

I
(
(x, y), L

)
=

∫ Te

0

r
(
(x, y), L

)
dt, (2)

By assuming small displacements, a displacement s will produce a change in
the radiance approximately equal to:

r
(
(x, y) + s, L0

)
= r
(
(x, y), L0

)
+ s∇r

(
(x, y), L0

)
, (3)

where ∇r is the radiance gradient. The produced relation is based on bright-
ness conservation and is used to estimate the displacements in gradient-based
optical flow such as Lucas-Kanade [1, 2]. The equation is typically written
in the form of pixel intensities instead of radiance.

By additionally incorporating a harmonically varying illumination L(t) =
L0 + LA sin(ωl t) the radiance can be expressed as:

r
(

(x, y) + s
(
(x, y), t

)
, L(t)

)
=
L(t)

L0

r
(

(x, y) + s
(
(x, y), t

)
, L0

)
=

=
L(t)

L0

(
r
(
(x, y), L0

)
+ s
(
(x, y), t

)
∇r
(
(x, y), L0

))
(4)

By integrating both sides of the equation (4) over the exposure time Te
and neglecting non-significant terms, the following relation can be produced:

I
(

(x, y) + s
(
(x, y), t

)
, L(t)

)
︸ ︷︷ ︸

blinking & vibrations image

= I
(
(x, y), L0

)︸ ︷︷ ︸
reference image

+

+
LA
L0︸︷︷︸

illumination
scaling

∇I
(
(x, y), L0

)︸ ︷︷ ︸
reference image

gradient

Ss
(
(x, y), ωl

)
2︸ ︷︷ ︸

displacement
spectral

component

(5)

the above equation indicates that an image of a vibrating structure illumi-
nated with a harmonically varying light (blinking & vibrations image) is com-
posed of a motionless image under constant illumination (reference image)
and the distortion caused by the displacement spectral component, which is
a product of the illumination scaling, the reference image gradient and the
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displacement spectral component Ss
(
(x, y), ωl

)
of the frequency equal to the

frequency of the varying light ωl.
By subtracting the reference image from the blinking & vibrations image

and scaling the result with the reference image gradient and the illumination
scaling, a displacement spectral component Ss

(
(x, y), ωl

)
can be obtained for

every pixel:

Ss
(
(x, y), ωl

)
=
I
(

(x, y) + s
(
(x, y), t

)
, L(t)

)
− I
(
(x, y), L0

)
1
2
LA

L0
∇I
(
(x, y), L0

) (6)

By using different frequencies for the blinking lights, other spectral com-
ponents can be measured, also by changing the phase of the lights from
sin(ωl t) to cos(ωl t) the cosine amplitudes Sc((x, y), ωl) can be measured.
The frequency of interest is not limited by the camera and can be very high
(in the range of kHz) as long as the displacements are significant enough
(above the noise floor) to be identified. Relatively small displacement ampli-
tudes can be measured, because a typical displacement resolution between
two images is in the range of a hundredth of a pixel, provided that the gra-
dient in the pixel (x, y) is appropriate [1].

The principle of measuring individual spectral components using SOFI is
analogous to the Fourier transform and is equally affected by windowing ef-
fects and spectral leakage [23]. To avoid windowing effects, the exposure time
Te should preferably match multiples of the displacement and illumination
harmonic periods.

The displacement amplitudes Ss((x, y), ωn) and Sc((x, y), ωn) are dis-
placements in the direction of the image gradient only. The 2D displacements
can be obtained using Lucas-Kanade by solving the system of equations for
a H ×H subset containing various gradient directions:{

∆x
∆y

}
=

[ ∑
(∂I0
∂x

)2
∑

(∂I0
∂x

∂I0
∂y

)∑
(∂I0
∂x

∂I0
∂y

)
∑

(∂I0
∂y

)2

]−1{ ∑ (
(I1 − I0) ∂I0

∂x

)∑ (
(I1 − I0) ∂I0

∂y

) } , (7)

where I0 is the reference image, I1 is the translated image, ∂I/∂x indicates
the gradient in the x direction and likewise y, ∆x and ∆y are the x and y
displacement components and the summations indicate the convolutions over
the subset:∑ (

∂I0

∂x

∂I0

∂y

)
=

H
2∑

k=−H
2

H
2∑

l=−H
2

(
∂I0

∂x
(x+ k, y + l)

∂I0

∂y
(x+ k, y + l)

)
(8)
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In the case of SOFI, to obtain the 2D displacement componentsXs((x, y), ωl)

and Ys((x, y), ωl), image I
(

(x, y) + s
(
(x, y), t

)
, L(t)

)
should be used in place

of I1 and the reference image I
(

(x, y), L0

)
should be used in place of I0.

Also, the result has to be scaled according to the illumination 1/(LA/L0).

3. Hybrid Modal-parameter identification

A structure’s dynamic response xj(t) at position j for excitation in posi-
tion k is a linear combination of the modal coordinates [24]:

xj(t) =
∑
r

rAjk eλr t, (9)

where rAjk is the modal constant value for location j and represents the
spatial scaling. Modal constants represent the scaled mode shapes, as mode
shapes are otherwise non-dimensional. eλr t is the complex exponential time
response with an eigenvalue λr = −ζrωr ± i ωr

√
1− ζ2

r for the r-th mode,
where ωr and ζr are the eigenfrequency and the modal damping coefficient.
As is clear from the ± in front of the imaginary part, λr comes in conjugate
pairs, one with a modal constant rAjk and the other with its conjugate pair

rA
∗
jk.
Modal-parameter identification methods typically identify the eigenval-

ues and the mode shapes separately. By using the least-squares complex-
frequency (LSCF) [21] identification method, stabilization diagrams can be
produced and the eigenvalues picked from them. The identification is then
continued with the least-squares frequency-domain (LSFD) [22] identification
method to identify the mode shapes.

Since the time response is global (9), only one location has to be measured
to obtain the eigenvalues λr (that is if the value rAjk for the chosen measured
location j and excitation k is 6= 0 for all r). By using a precise sensor, such
as an accelerometer or a laser vibrometer, eigenvalues can be identified from
a single point measurement (λ̂r for r = 1, 2, . . . , N).

After knowing the eigenvalues, selected full-field frequency components of
interest can be measured using SOFI and the full-field mode shapes identified
with the LSFD method. LSFD identifies the modal constants rAjk based on
the response model [25]:

αjk(ω) =
N∑
r=1

(
rAjk

i ω − λr
+

rA
∗
jk

i ω − λ∗r

)
− RL

ω2
+RU (10)
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RL and RU are the optional lower and upper residuals.
Using measured full-field (SOFI) frequency responses α̂jk(Ωn), where Ωn

are the selected measured angular frequencies of interest, a system of linear
equations can be produced using the equation (10):

α̂jk(Ω1)
α̂jk(−Ω1)
α̂jk(Ω2)

...
α̂jk(−ΩL)∗


=


1

i Ω1−λ̂1
1

−i Ω1−λ̂∗1
1

i Ω1−λ̂2
. . . 1

−i Ω1−λ̂∗N
1

i Ω2−λ̂1
1

−i Ω2−λ̂∗1
1

i Ω2−λ̂2
. . . 1

−i Ω2−λ̂∗N
...

...
. . .

...
...

1

i ΩL−λ̂1
1

−i ΩL−λ̂∗1
1

i ΩL−λ̂2
. . . 1

−i ΩL−λ̂∗N




1Ajk
1A

∗
jk

2Ajk
...

NA
∗
jk


(11)

The solution of the above system produces the modal constants (mode shapes)
and residuals. For N conjugate eigenvalue pairs (2N) at least N complex re-
sponse frequency points have to be measured to produce N conjugate modal
constant pairs (2N). N frequency points are conjugated to produce an ad-
ditional N negative frequency points α̂jk(−Ω1) = α̂jk(Ω1)∗, combining to
produce 2N equations forming the system in Eq. (11). An inverse can be de-
termined once and used to calculate the modal constants for each excitation
and response location jk.

4. Experiment and practical considerations

An experiment using a cymbal as the test structure was performed. A
cymbal was chosen because it has a wideband dynamic response and has
been measured extensively in previous experiments [1, 19].

Since SOFI only works for small displacements and is sensitive to large
rigid-body motions, the cymbal was rigidly fixed at its centre hole and a
stinger for shaker excitation was attached close to the ridge of the cymbal’s
inner indentation (see Figure 1).

A simple light regulating the circuit was used to harmonically regulate
the light intensity and the experiment was performed in a dark (anechoic)
chamber to avoid outside interference, such as ambient light.

The excitation was measured with a force transducer attached between
the shaker and the cymbal. The response was measured with an accelerome-
ter. Later, an additional response point was measured with a laser vibrome-
ter, because the accelerometer placement failed to identify some mode shapes.
The light intensity was measured as well, for the purposes of monitoring.
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accelerometer

fixture

lights

light
regulator

excitation
point

DSLR
camera

Figure 1: The SOFI experimental set-up using a consumer DSLR camera to measure
a cymbals dynamic response to excitation with a shaker. The LED illumination and a
regulating circuit are situated above the cymbal to produce the desired illumination.

The eigenvalue identification was performed on the accelerometer and
laser vibrometer measurements for a regulated pseudo-random (multi-sine)
excitation of a 2 s window with a 30-1000 Hz frequency band.

The full-field spectral response measurements were later performed using
SOFI on a Nikon D5300 DSLR camera during single harmonic excitation for
frequencies selected to be close to the peak responses from the accelerome-
ter and laser vibrometer measurements (see Table 1 for a list of measured
frequencies). These are used in the LSFD identification of the mode shapes.
The responses measured close to the resonant frequencies are already good
approximations of the mode shapes, however they still contain residuals of
mode shapes close by, while the modes identified with LSFD do not.

Table 1: The selected frequencies in Hz for the SOFI measurement.

32.7 56.1 91.3 111.8 257.0 264.6 272.5 299.6 340.7 349.1
455.9 464.6 531.5 534.3 551.6 562.5 576.7 568.5 601.7 632.6
643.0 647.6 664.1 731.2 734.3 742.4 749.6 799.0 815.3 832.6
835.0 842.1 861.7 884.9 943.0 946.0 944.8 982.5 991.3
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A problem arose associated with ensuring the repeatability between sepa-
rate images. Motion and image brightness variations were observed between
images taken under identical conditions. The source of the brightness in-
consistencies remains unclear; however, it could be avoided by normalising
the brightness over the entire image. A greater problem was the apparent
motion between sequential and supposed stationary images. After extensive
testing on a vibro-isolated block the source of motion appeared to be the
jerk caused by the retraction of the mirror and the operation of the mechan-
ical shutter of the DSLR camera. The jerk causes slight displacements of
the camera and more critically the lenses, causing slight shifts that result in
zoom and other apparent displacement fields. Figure 2 shows an example of
such apparent displacements. The displacements are typically in the range of
0.1 pixel, which is significant, since the intention is to measure in the range
of 0.01 pixel or less. The problem was solved by filming a video instead of

0.2 pixel

Figure 2: Example of the apparent displacement fields caused by the jerk of the camera
shutter and/or the mirror retraction (a crop from a 6000×4000 pixel image).

taking still images. A manual video setting of 50 fps and an exposure of
1/50 s was used to film the cymbal. By summing the 1/50 s frames of the
50 fps video an apparent still image could be produced, because no significant
discontinuation of the intensity integration (2) is present between the video
frames. An exposure Te of approximately 0.5 s was required for a single still
image to be used as SOFI. The exact exposure was tailored between 0.489
and 0.505 s to reduce the windowing effects. The exposure was controlled
by setting the length of the illumination and turning the light off between
separate images. To obtain the separate images the ≈ 25 frames of the video
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during the illumination were summed and converted to black and white. Fig-
ure 3 shows one such still image produced from the video. Catching frames

Figure 3: Image produced from the DSLR camera video (resolution 1920×1080). The red
square indicates the position of the accelerometer on the lower side of the cymbal.

from video is not the best solution, because the video is lossy compressed
and the image resolution and bit depth are reduced, but the results proved
to be very good, despite this.

The images for a selected frequency were taken in the following order.
The single harmonic excitation was turned on and the cymbal started vi-
brating in the dark. Then a constant intensity light was shown for the set
exposure time Te, thereby producing the reference image. This was followed
by a break in the illumination, then sine-phased harmonic light illumination
for another period of Te, and then cosine-phased harmonic illumination fol-
lowing that. The sequence of the three images (reference, sine, cosine) was
repeated five times and later averaged to reduce the image noise. The film
sequence was repeated for each chosen frequency. In order to be able to ex-
cite higher frequency responses with a greater intensity, the excitation used
was single harmonic, otherwise SOFI can work with broad-band vibrations.
Figure 4 shows the illumination and the excitation force during a SOFI mea-
surement at 32.71 Hz. The illumination indicates the different segments of
the measurement, i.e., the reference, sine and cosine images, repeated five
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times.

sinereference cosine

time [s]

time [s]

Figure 4: Measured illumination (blue) and force (orange) during five repetitions of a
SOFI measurement at Ω0 = 2 ·π · 32.71. The close-up illustrates the different illumination
regimes.

The phase matching between the SOFI measurement and the force mea-
surement is achieved by syncing the illumination with the excitation. Syncing
was achieved by normalizing the full-field SOFI responses with the force am-
plitude, whose phase was determined with respect to the illumination phase.
The normalization produces the full-field receptance values αjk(Ωn) for the
chosen frequency Ωn.

5. Results

Figures 5 and 6 show some of the 39 mode shapes (modal constants)
obtained from the SOFI measurement in the hybrid modal-parameter iden-
tification with the accelerometer eigenvalues. Each shape is accompanied by
the identified eigenvalue in the form of an eigenfrequency fr and damping ζr.
The plots are composed of arrows indicating the direction of the motion. The
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density of the measured points can be very high (1739 point were measured
in this example) and the arrows cannot be resolved in Figure 6, which is why
Figure 5 is enlarged and composed of a reduced number of arrows. Green
arrows are used to indicate the real values of the modal constants and the
red arrows the imaginary values (colours available online). The intensity of
the colours along with the size of the arrows indicate the magnitudes of the
modal constant components.

Figure 5: Large figure of an identified mode shape using SOFI. Green arrows indicate the
direction and size of the real value components and red indicate the imaginary components.

Figure 6: Set of dense identified mode shapes (1739 points) using the DSLR camera and
SOFI.

The 39 identified modes for the point coincident to the position of the
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accelerometer (see the red square in Figure 3) were then used to reconstruct
the frequency-response function and compare it with the one measured by
the accelerometer. The reconstructed response and the measured response
are compared in Figure 7. Generally, the agreement between the responses
is good. The accelerometer measurement and the SOFI measurement were
performed as separate measurements for different excitation regimes and it
is believed that the SOFI measurement was considerably influenced by the
effect of non-linearities, due to an increased amplitude of the excitation that
was used to make the displacements more evident to the camera, causing
deviations from the accelerometer-only measurement. It should be noted that
the maximum response amplitudes ranged from approximately four pixels
in the case of the first two modes down to only 0.01 pixel in the case of
higher-end frequencies. Some of these small amplitudes appear to be very
close to the noise floor. Also, some of the points with the higher-amplitude
displacements of the first two modes might have violated the small-motion
assumption.

0 100 200 300 400 500 600 700 800 900 1000
f [Hz]

10 8

10 7

10 6

10 5

10 4

 [m
/N

]

accelerometer
SOFI

Figure 7: Comparison of the frequency response measured by the accelerometer and the
response identified using SOFI in the hybrid modal-parameter identification. The vertical
dotted lines indicate the identified resonant frequencies.

6. Conclusion

Still-frame cameras produce higher-resolution images at a lower cost. By
using spectral optical flow imaging (SOFI), displacements caused by high
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frequency oscillations can be measured far above the camera’s frame rate.
Using aliasing approaches demonstrated in works [9–11] at frequencies so far
above the Nyquist frequency, would produce a very cluttered spectrum and
probably an increase in uncertainty. In SOFI a harmonically time-varying
illumination modulates the displacements and the camera integrates them
over time, thereby producing the displacement spectral components over the
entire image. In this paper the SOFI full-field displacement fields were used
along with an accelerometer/laser-vibrometer measurement to identify the
full-field mode shapes with a hybrid modal-parameter identification. The
proposed approach was successful in identifying the modal parameters from
which the response functions for the full-field can be produced and are in
agreement with the accelerometer measurement. To produce satisfactory
results, appropriate conditions have to be met: the illumination has to vary
harmonically, the displacement should be small and no camera motion should
be present. The camera motion proved to be the greatest problem, because
it seems that the camera’s shutter operation produces shifts in the lens optics
between frames. So, instead of capturing still-frames a continuous video was
filmed and decomposed into separate SOFI images.
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